The Journal of Fuzzy Mathematics Vol. 17, No. 1, 2009 35 Los Angeles

The Uniformizability of L-topological Groups

Fatma Bayoumi * and Ismail Ibedou

Department of Mathematics, Faculty of Sciences, Benha University, Benha 13518, Egypt * E-mail: fatma_bayoumi@hotmail.com

Abstract:

In this paper, we show that any stratified L-topological group (G, τ) is uniformizable. That is, we define, using the family of prefilters which corresponds the fuzzy neighborhood filter at the identity element of (G, τ) , unique left and right invariant fuzzy uniform structures on G compatible with the fuzzy topology τ . On the other hand, on any group G , using a family of prefilters on G fulfills certain conditions, we construct those left and right fuzzy uniform structures which induce a stratified fuzzy topology τ on G for which (G,τ) is a stratified L-topological group and this family of prefilters coincides with the family of prefilters corresponding to the fuzzy neighborhood filter at the identity element of (G, τ) . Moreover, we show the relation between the L topological groups and the GT_i -spaces, such as: the fuzzy topology of an L -topological group (resp., a separated L -topological group) is completely regular, (resp., $GT_{3\frac{1}{2}}$)

Keywords:

Fuzzy filters; Fuzzy uniform spaces; Fuzzy topological groups; GT_i -spaces; Completely regular spaces; $GT_{3\frac{1}{2}}$ -spaces; L-Tychonoff spaces.

1. Introduction

The notion of an L-topological group (G, τ) is defined by Ahsanullah [1] in 1984 as an ordinary group G equipped with a fuzzy topology τ on G such that the binary operation and the unary operation of the inverse are fuzzy continuous with respect to τ . In $[1,7]$, many results on the L -topological groups are studied. These L -topological

Received June, 2006

groups are called, in [1], fuzzy topological groups. An L-topological group (G,τ) is called stratified if the L-topology τ is stratified.

The fuzzy neighborhood filter at the identity element of the stratified L -topological group (G, τ) corresponds a family of prefilters on G [11]. Using this family of prefilters, we construct, in this paper, a unique left invariant fuzzy uniform structure \mathcal{U}^{ℓ} and a unique right invariant fuzzy uniform structure U^r on G. These fuzzy uniform structures U^l and U^r are compatible with τ , that is, $\tau_{U^l} = \tau_{U^r} = \tau$. This means that the stratified L -topological group (G,τ) is uniformizable. The fuzzy uniform structures U^{\dagger} and U^{\dagger} are fuzzy uniform structures in sense of [12] which are defined as fuzzy filters on the cartesian product $G \times G$ of G with itself. We show also here that for any group G and any family of prefilters fulfills certain conditions, we define the left and the right fuzzy uniform structures U^l and U^r on G such that $\tau_{\mu^l} = \tau_{\mu^r}$ is a stratified fuzzy topology τ on G for which the pair (G,τ) is a stratified L-topological group. Moreover, this family of prefilters is exactly the family of prefilters which corresponds the fuzzy neighborhood filter at the identity element of the stratified L -topological group (G, τ) .

Moreover, in this paper, we study some relations between the L -topological groups and the fuzzy separation axioms GT_i which we had introduced in [2,3,5]. We show that the fuzzy topology τ of an L -topological group (G,τ) is completely regular in our sense [5] and that the L -topological group (G,τ) is separated if and only if the fuzzy topology τ is GT_0 (resp. GT_1 , GT_2 , $GT_{3\frac{1}{2}}$) if and only if the left fuzzy uniform structure \mathcal{U}^{\dagger} (resp. the right fuzzy uniform structure \mathcal{U}^{\dagger}) is separated.

2. On fuzzy filters

Let L be a complete chain with different least and greatest elements 0 and 1 , respectively. Let $L_0 = L \setminus \{0\}$ and $L_1 = L \setminus \{1\}$. Denote by L^X the set of all fuzzy subsets of a non-empty set X . By a *fuzzy filter* on X [9,10] is meant a mapping $\mathcal{M}: L^X \to L$ such that $\mathcal{M}(\overline{\alpha}) \leq \alpha$ holds for all $\alpha \in L$ and $\mathcal{M}(\overline{1}) = 1$, and also $M(f \wedge g) = M(f) \wedge M(g)$ for all $f, g \in L^X$. A fuzzy filter M is called *homogeneous* if $M(\overline{\alpha}) = \alpha$ for all $\alpha \in L$. If M and N are fuzzy filters on X, M is said to be *finer than* N, denoted by, $M \le N$, provided $M(f) \ge N(f)$ holds for all $f \in L^X$. By $M \leq N$ we denote that M is not finer than N.

For any set A of fuzzy filters on X, the infimum $\bigwedge_{M \in A} M$, with respect to the finer relation on fuzzy filters, does not exist in general. The infimum $\bigwedge_{M \in A} M$ of A exists *if and only if for each non-empty finite subset* $\{M_1, \dots, M_n\}$ of A we have

 $\mathcal{M}_1(f_1) \wedge \cdots \wedge \mathcal{M}_n(f_n) \le \sup(f_1 \wedge \cdots \wedge f_n)$ for all $f_1, \cdots, f_n \in L^X$ [9]. If the infimum of A exists, then for each $f \in L^X$ and n as a positive integer we have

$$
\left(\bigwedge_{\mathcal{M}\in A}\mathcal{M}\right)(f)=\bigvee_{\substack{f_1\wedge\cdots\wedge f_n\leq f,\\ \mathcal{M}_1,\cdots,\mathcal{M}_n\in A}}\left(\mathcal{M}_1\left(f_1\right)\wedge\cdots\wedge\mathcal{M}_n\left(f_n\right)\right).
$$

A *prefilter* on X is a non-empty subset F of L^X which does not contain $\overline{0}$ and closed under finite infima and super sets [15]. For each fuzzy filter M on X , the subset α -pr $\mathcal M$ of L^X defined by:

$$
\alpha - \text{pr } \mathcal{M} = \left\{ f \in L^X \, \middle| \mathcal{M}(f) \ge \alpha \right\}
$$

is a prefilter on X .

A *valued fuzzy filter base* on a set X [10] is a family $(\mathcal{B}_{\alpha})_{\alpha \in I_{\alpha}}$ of non-empty subsets of L^X such that the following conditions are fulfilled:

(V1) $f \in \mathcal{B}_{\alpha}$ implies $\alpha \leq \sup f$.

(V2) For al $\alpha, \beta \in L_0$ and all mappings $f \in \mathcal{B}_\alpha$ and $g \in \mathcal{B}_\beta$, if even $\alpha \wedge \beta > 0$ holds, then there are a $\gamma \ge \alpha \wedge \beta$ and a fuzzy set $h \le f \wedge g$ such that $h \in \mathcal{B}_{\gamma}$.

Each valued fuzzy filter base $(B_{\alpha})_{\alpha \in L_0}$ on a set X defines a fuzzy filter M on X by $\mathcal{M}(f) = \bigvee_{g \in \mathcal{B}_\alpha, g \leq f} \alpha$ for all $f \in L^X$. On the other hand, each fuzzy filter M can be generated by many valued fuzzy filter bases, and among them the greatest one $(\alpha - \text{pr}\mathcal{M})_{\alpha \in L_0}$.

Proposition 2.1 [10]. *There is a one-to-one correspondence between the fuzzy filters* M on X and the families $(M_\alpha)_{\alpha \in I_\alpha}$ of prefilters on X which fulfill the following *conditions:*

- (1) $f \in \mathcal{M}_{\alpha}$ *implies* $\alpha \leq \sup f$ *.*
- (2) $0 < \alpha \leq \beta$ implies $\mathcal{M}_{\alpha} \supseteq \mathcal{M}_{\beta}$.

(3) For each $\alpha \in L_0$ with $\bigvee_{0 \leq \beta \leq \alpha} \beta = \alpha$ we have $\bigcap_{0 \leq \beta \leq \alpha} \mathcal{M}_\beta = \mathcal{M}_\alpha$.

This correspondence is given by $\mathcal{M}_{\alpha} = \alpha - \text{pr}\mathcal{M}$ *for all* $\alpha \in L_0$ *and* $\mathcal{M}(f) = \bigvee_{g \in \mathcal{M}_{\alpha}, g \leq f} \alpha$ for all $f \in L^X$.

Fuzzy neighborhood filters. In the following the fuzzy topology τ on a set X in sense of [8,13] will be used, int_{τ} and cl_{τ} denote the interior and the closure operators with respect to τ , respectively. For each fuzzy topological space (X,τ) and each $x \in X$ the mapping $\mathcal{N}(x) : L^X \to L$ defined by

$$
\mathcal{N}(x)(f) = \text{int}_{\tau} f(x)
$$

for all $f \in L^X$ is a fuzzy filter on X, called the *fuzzy neighborhood filter* of the space (X,τ) at x [11].

 $f \in L^X$ is called a τ -*neighborhood* at $x \in X$ provided $\alpha \leq int_{\tau} f(x)$ for some $\alpha \in L_0$. That is, f is a τ -neighborhood at x if $f \in \alpha - \text{prN}(x)$ for some $\alpha \in L_0$.

Let (X, τ) and (Y, σ) be two fuzzy topological spaces. Then the mapping $f:(X,\tau) \to (Y,\sigma)$ is called *fuzzy continuous* (or (τ,σ) *-continuous*) provided $\int \int \text{int}_{\tau} g \circ f \leq \text{int}_{\tau} (g \circ f) \text{ for all } g \in L^Y$.

3. L **topological groups**

In the following we focus our study on a multiplicative group G . We denote, as usual, the identity element of G by e and the inverse of an element a of G by a^{-1} .

Let $\pi: G \times G \rightarrow G$ be a mapping defined by

$$
\pi(a,b) = ab \text{ for all } a,b \in G ,
$$

and $i: G \to G$ a mapping defined by

$$
i(a) = a^{-1} \text{ for all } a \in G,
$$

that is, π and i are the binary operation and the unary operation of the inverse on G , respectively.

Here, we define the product of $f, g \in L^G$ with respect to the binary operation π on G as the fuzzy set fg in G defined by:

$$
fg = \bigwedge_{f(x) > 0, g(y) > 0} \left(xy \right)_1 \tag{3.1}
$$

In particular, for all $a \in G$ and all $f \in L^G$, we have $af \in L^G$ defined by

$$
af = \bigwedge_{f(x)>0} (ax)_1 \tag{3.2}
$$

and $fa \in L^G$ defined by

$$
fa = \bigwedge_{f(x)>0} (xa)_1.
$$
 (3.3)

Also, we can define the inverse of $f \in L^G$ with respect to the unary operation i on G as the fuzzy set f^{-1} on G by:

$$
f^{-1}(x) = f(x^{-1}) \text{ for all } x \in G.
$$
 (3.4)

The following definitions are similar to those in [14].

Definition 3.1. Let τ be a fuzzy topology on a group G . The mapping π : $(G \times G, \tau \times \tau) \rightarrow (G, \tau)$ is called $(\tau \times \tau, \tau)$ -continuous in each variable separately if for all $f \in \alpha - \text{pr}\mathcal{N}(ab)$, there exists $g \in \alpha - \text{pr}\mathcal{N}(b)$ such that $ag \leq f$ or there exists $h \in \alpha - \text{prN}(a)$ such that $hb \leq f$ for some $\alpha \in L_0$ and for all $a, b \in G$.

Definition 3.2. Let G be a group and τ be a fuzzy topology on G. Then the pair (G, τ) will be called a *semi-L -topological group* if the mapping π is $(\tau \times \tau, \tau)$ continuous in each variable separately.

Definition 3.3. The mapping π is called $(\tau \times \tau, \tau)$ -*continuous everywhere* if for all $f \in \alpha - \text{prN} (ab)$, there exist $g \in \alpha - \text{prN} (a)$ and $h \in \alpha - \text{prN} (b)$ such that $gh \leq f$ for some $\alpha \in L_0$ and for all $a, b \in G$.

Definition 3.4. The mapping i is called (τ, τ) -*continuous* if for all $f \in \alpha - \text{prN}(a^{-1})$, there exists an $g \in \alpha - \text{prN}(a)$ such that $g^{-1} \leq f$ for some $\alpha \in L_0$ and for all $a \in G$.

Definition 3.5 [1]. Let G be a group and τ be a fuzzy topology on X. Then the pair (G, τ) will be called an L -*topological group* if the mapping π is $(\tau \times \tau, \tau)$. continuous everywhere and the mapping i is (τ, τ) -continuous.

Clearly, every L -topological group is a semi- L -topological group.

Proposition 3.1. *The pair* (G, τ) *is an L -topological group if and only if for all* $f \in \alpha - \text{pr} \mathcal{N} (a^{-1}b)$, there exist $g \in \alpha - \text{pr} \mathcal{N} (a)$ and $h \in \alpha - \text{pr} \mathcal{N} (b)$ such that $g^{-1}h \leq f$ for some $\alpha \in L_0$ and for all $a, b \in G$.

Proof. Obvious.

Let us call a fuzzy set $f \in L^G$ symmetric if the inverse f^{-1} , defined by (3.4), fulfills that $f = f^{-1}$. For each group G and $a \in G$, the *left* and *right translations* are the homomorphism $l_a: G \to G$ defined by $l_a(x) = ax$ and $R_a: G \to G$ defined by $R_a(x) = xa$ for each $x \in G$, respectively. The left and right translations in L topological groups fulfill the following result.

Proposition 3.2 [7]. *Let* (G,τ) *be an L -topological group. Then for each* $a \in G$ *the left and right translations* l_a *and* R_a *are L -homeomorphisms.*

We shall use the following result.

Lemma 3.1. Let f be an open fuzzy set in an L -topological group (G, τ) . Then for any $x_0 \in G$ the fuzzy sets fx_0 and x_0f are also open.

Proof. Consider the mapping

$$
h: G \to G \times G, x \mapsto (x_0^{-1}, x)
$$

and the projection mappings

$$
p_1: G \times G \to G , (x_1, x_2) \mapsto x_1
$$

and

$$
p_2: G \times G \to G, (x_1, x_2) \mapsto x_2.
$$

Then $(p_1 \circ h)(x) = x_0^{-1}$ and $(p_2 \circ h)(x) = x$. Since $(p_1 \circ b)$ and $(p_2 \circ h)$ are (τ, τ) . continuous, then h is also $(\tau, \tau \times \tau)$ -continuous. Now, we have

$$
\pi: G \times G \to G, (x_1, x_2) \mapsto x_1 x_2
$$

is $(\tau \times \tau, \tau)$ -continuous, and thus the mapping $\lambda = \pi \circ h$, for which $\lambda(x) = \pi(h(x)) =$ $\pi(x_0^{-1},x) = x_0^{-1}x$ for all $x \in G$, is (τ,τ) -continuous. Also, $\lambda^{-1}(x_0^{-1}x) = x$ for all $x \in G$, that is, $\lambda^{-1}(x) = x_0 x$ for all $x \in G$. In particular, $x_0 f = \lambda^{-1}(f)$ is a fuzzy open set in (G,τ) . fx_0 is also open with a similar proof.

Recall that: If $f:X \to Y$ is a mapping between the non-empty sets X and Y and $h \in L^Y$, then the *preimage* $f^{-1}(h)$ of h with respect to f is defined by $f^{-1}(h) = h \circ f$. Now, we prove the following result.

Lemma 3.2.*Let* (G, τ) *be an L -topological group and* $x_0 \in G$.*Then* $f \in \alpha - pr \mathcal{N}(e)$ *if and only if* $x_0 f \in \alpha - \text{pr}\mathcal{N}(x_0)$ *if and only if* $fx_0 \in \alpha - \text{pr}\mathcal{N}(x_0)$ *.*

Proof. Since the mapping $\lambda = \pi \circ h$, as in Lemma 3.1, is (τ, τ) -continuous, then $\int \int f \circ \lambda \leq \int f(g \circ \lambda)$ for all $g \in L^G$. That is,

$$
\operatorname{int}_{\tau} f\left(x_0^{-1}x\right) = \operatorname{int}_{\tau} f\left(\lambda(x)\right) \le \operatorname{int}_{\tau} \left(f \circ \lambda\right)\left(x\right) = \operatorname{int}_{\tau} \left(\lambda^{-1}\left(f\right)\right)\left(x\right) = \operatorname{int}_{\tau} \left(x_0 f\right)\left(x\right)
$$

for all $x \in G$ and all $f \in L^G$. Hence, $f \in \alpha - \text{pr}\mathcal{N}(e)$ if and only if $x_0 f \in \alpha - \text{pr}\mathcal{N}(x_0)$. The other case is similar and the proof is then complete.

4. L **-topological groups and their canonical fuzzy uniform structures**

An L -topological group (G,τ) is called *stratified* if the L -topology τ is stratified, that is, all constant fuzzy sets $\overline{\alpha}$ belong to τ . In the sequel we show that for each stratified L -topological group (G, τ) , there are unique left and right invariant fuzzy uniform structures on G compatible with τ .

For a family $(\mathcal{V}_{\alpha})_{\alpha \in \mathcal{I}_{\alpha}}$ of subsets \mathcal{V}_{α} of L^{X} , consider the following conditions:

- (e1) For all $\alpha \in L_0$, if $0 < \beta \leq \alpha$, then $V_\alpha \subseteq V_\beta$,
- (e2) For all $\alpha \in L_0$ with $\bigvee_{0 \leq \beta \leq \alpha} \beta = \alpha$, we have $\bigvee_{\alpha} = \bigcap_{0 \leq \beta \leq \alpha} \bigvee_{\beta}$,
- (e3) For all $\alpha \in L_0$ and all $f \in V_\alpha$, we have $\alpha \leq \sup f$,
- (e4) For all $\alpha \in L_0$ and all $f \in V_\alpha$, there exists $g \in V_\alpha$ such that $g^{-1} \leq f$,
- (e5) For all $\alpha \in L_0$ and all $f \in V_\alpha$, there exists $g \in V_\alpha$ such that $gg \leq f$.

Proposition 4.1. Let $N(e)$ be the fuzzy neighborhood filter at the identity element e *of an L -topological group* (G,τ) *. Then the family* $(\alpha - pr\mathcal{N}(e))_{\alpha \in I_0}$ *of prefilters* α – pr $\mathcal{N}(e)$ fulfills the conditions (e1) – (e5).

Proof. Since $0 < \beta \le \alpha$ and $f \in \alpha - \text{prN}(e)$ imply that $\beta \le \alpha \le \text{int}_{\tau} f(e)$, then $f \in \beta - \text{prN}(e)$. Hence, $\alpha - \text{prN}(e) \in \beta - \text{prN}(e)$, and (e1) is fulfilled.

From (e1), we get that $\alpha - \text{pr} \mathcal{N}(e) \subseteq \bigcap_{0 < \beta < \alpha} \beta - \text{pr} \mathcal{N}(e)$. Now, if $f \in \bigcap_{0 < \beta < \alpha} \beta -$ pr $\mathcal{N}(e)$, then $f \in \beta - \text{pr}\mathcal{N}(e)$ for all $\beta \in L_0$ with $\alpha = \bigvee_{0 \leq \beta \leq \alpha} \beta$, which means that $f \in \alpha - \text{prN}(e)$ and hence (e2) holds.

(e3) is evident.

Since $i(e) = e^{-1} = e$ and i is (τ, τ) -continuous, then (e4) is fulfilled.

Since $\pi(e, e) = ee = e$ and π is $(\tau \times \tau, \tau)$ -continuous every where, then (e5) is fulfilled.

Fuzzy uniform structures. Let \mathcal{U} be a fuzzy filter on $X \times X$. The *inverse* \mathcal{U}^{-1} of U is a fuzzy filter on $X \times X$ defined by $\mathcal{U}^{-1}(u) = \mathcal{U}(u^{-1})$ for all $u \in L^{X \times X}$, where u^{-1} is the inverse of u defined by: $u^{-1}(x, y) = u(y, x)$ for all $x, y \in X$. Let, each $\alpha \in L$, $\tilde{\alpha}$ denote the constant mapping: $X \times X \to L$ defined by $\tilde{\alpha}(x, y) = \alpha$ for all $x, y \in X$ [12]. For each pair (x, y) of elements x, y of X, the mapping $(x, y)^{\bullet}: L^{X \times X} \to L$ defined by $(x, y)^{\bullet}(u) = u(x, y)$ for all $u \in L^{X \times X}$ is a homogeneous fuzzy filter on $X \times X$. Let U and V be fuzzy filters on $X \times X$ such that (x, y) ^{$\in U$} and (y, z) ^{$\in V$} hold for some $x, y, z \in X$. Then the *composition* $\mathcal{V} \circ \mathcal{U}$ of \mathcal{U} and \mathcal{V} is [12] the fuzzy filter on $X \times X$ defined by

$$
(\mathcal{V} \circ \mathcal{U})(w) = \bigvee_{v \circ u \le w} (\mathcal{U}(u) \wedge \mathcal{V}(v))
$$
\n(4.1)

for all $w \in L^{X \times X}$, where $u, v, v \circ u \in L^{X \times X}$ and

$$
(v \circ u)(x, y) = \bigvee_{z \in X} \big(u(x, z) \wedge v(z, y) \big) \tag{4.2}
$$

for all $x, y \in X$.

By a *fuzzy uniform structure U* on a set X [12] we mean a fuzzy filter on $X \times X$ such that:

- (U1) (x, x) ^{\leq} \leq \mathcal{U} for all $x \in X$.
- (U2) $\mathcal{U} = \mathcal{U}^{-1}$.
- (U3) $\mathcal{U} \circ \mathcal{U} \leq \mathcal{U}$.

A set X equipped with a fuzzy uniform structure U is called a *fuzzy uniform space*. For any complete chain we have the following result.

Lemma 4.1. *The supremum of two fuzzy uniform structures is a fuzzy uniform structure.*

Proof. Clear.

Proposition 4.2 [12]. *There is a one-to-one correspondence between the fuzzy uniform structures U* on X and the families $(U_\alpha)_{\alpha \in I_\alpha}$ of prefilters on $X \times X$ which *fulfill the following conditions:*

(u1) $0 < \beta \le \alpha$ *implies* $\mathcal{U}_{\alpha} \subseteq \mathcal{U}_{\beta}$.

- (u2) *For each* $\alpha \in L_0$ *with* $\bigvee_{0 \leq \beta \leq \alpha} \beta = \alpha$, we have $\mathcal{U}_\alpha = \bigcap_{0 \leq \beta \leq \alpha} \mathcal{U}_\beta$.
- (u3) *For all* $\alpha \in L_0$ *,* $u \in \mathcal{U}_\alpha$ *and* $x \in X$ *, we have* $\alpha \leq u(x, x)$ *.*
- (u4) $u \in \mathcal{U}_{\alpha}$ implies $u^{-1} \in \mathcal{U}_{\alpha}$ for all $\alpha \in L_0$.
- (u5) *For each* $\alpha \in L_0$ *and each* $u \in \mathcal{U}_\alpha$, we have $\alpha \leq \bigvee_{v \in \mathcal{U}_\alpha, v \in \mathcal{V}_\alpha} \beta$.

This correspondence is given by $U_\alpha = \alpha - \text{prU}$ *for all* $\alpha \in L_0$ *and* $U(u) = \bigvee_{v \in U_\alpha, v \leq u} \alpha$ *for all* $u \in L^{X \times X}$ *. Now we shall prove the following important results in which those conditions (e1) – (e5) for the family* $(\alpha - pr \mathcal{N}(e))_{\alpha \in L_0}$ are necessary to construct fuzzy *uniform structures by which the stratified L -topological group* (G, τ) *is uniformizable. First, we construct these fuzzy uniform structures and then, in another proposition, we show that* (G, τ) *is uniformizable.*

Proposition 4.3. Let (G, τ) be an L-topological group. Then the families $(\mathcal{U}_{\alpha}^{l})_{\alpha \in I_{v}}$ and $(u_{\alpha}^r)_{\alpha \in I_0}$ of the subsets u_{α}^l and u_{α}^r of $L^{G \times G}$ defined by

$$
\mathcal{U}_{\alpha}^{l} = \left\{ u \in L^{G \times G} \middle| u(x, y) = \left(f \wedge f^{-1} \right) \left(x^{-1} y \right) \text{ for some } f \in \alpha - \text{prN} \left(e \right) \right\} \tag{4.3}
$$

and

$$
\mathcal{U}_{\alpha}^r = \left\{ u \in L^{G \times G} \left| u(x, y) = \left(f \wedge f^{-1} \right) \left(xy^{-1} \right) \text{ for some } f \in \alpha - \text{prN} \left(e \right) \right\} \tag{4.4}
$$

correspond fuzzy uniform structures U^l *and* U^r *on* G *, respectively by the following:*

$$
\mathcal{U}_{\alpha}^{l} = \alpha - \text{pr}\mathcal{U}^{l} \text{ and } \mathcal{U}^{l}(u) = \bigvee_{v \in \mathcal{U}_{\alpha}^{l}, v \leq u} \alpha \tag{4.5}
$$

and

$$
\mathcal{U}_{\alpha}^{\top} = \alpha - \text{pr}\mathcal{U}^{\top} \text{ and } \mathcal{U}^{\top}(u) = \bigvee_{v \in \mathcal{U}_{\alpha}^{\top}, v \leq u} \alpha \tag{4.6}
$$

Proof. Since $\tilde{0}(x, x) = 0 \neq 1 = (f \wedge f^{-1})(e) = (f \wedge f^{-1})(x^{-1}x)$ for all $f \in \alpha - \text{prN}(e)$ and all $x \in G$, then $\tilde{0} \notin \mathcal{U}_{\alpha}^l$ for all $\alpha \in L_0$. Also, $\tilde{1} \in \mathcal{U}_{\alpha}^l$ for all $\alpha \in L_0$, from that there exists a symmetric fuzzy set $f = e_1 = (x^{-1}yy^{-1}x)_1 = (x^{-1}y)_1(y^{-1}x)_1 \in \alpha - \text{prN}(e)$ such that $(f \wedge f^{-1})(x^{-1}y) = f(x^{-1}y) \wedge f(y^{-1}x) = 1$ for all $x, y \in G$.

Let $u \in \mathcal{U}_\alpha^l$ for all $\alpha \in L_0$ and $v \geq u$. Then $v(x, y) \geq (f \wedge f^{-1})(x^{-1}y)$ for some $f \in \alpha$ $-pr\mathcal{N}(e)$ and for all $x, y \in G$. But $v \leq \tilde{1} \in \mathcal{U}_{\alpha}^{\perp}$ implies that there is $g \in \alpha - pr\mathcal{N}(e)$ such that $v (x, y) \le (g \wedge g^{-1}) (x^{-1} y)$ for all $x, y \in G$. That is, there is some $h \in \alpha - \text{prN} (e)$ such that $v(x, y) = (h \wedge h^{-1})(x^{-1}y)$ for all $x, y \in G$. Hence $v \in \mathcal{U}^l_\alpha$ for all $\alpha \in L_0$. Since $(f \wedge g) \in \alpha - \text{pr}\mathcal{N}(e)$ whenever $f \in \alpha - \text{pr}\mathcal{N}(e)$ and $g \in \alpha - \text{pr}\mathcal{N}(e)$, then for any $u, v \in \mathcal{U}_{\alpha}^l$, we get that

$$
(u \wedge v)(x, y) = u(x, y) \wedge v(x, y)
$$

= $(f \wedge f^{-1})(x^{-1}y) \wedge (g \wedge g^{-1})(x^{-1}y)$ for some $f, g \in \alpha - pr \mathcal{N}(e)$
= $((f \wedge g) \wedge (f \wedge g)^{-1})(x^{-1}y)$ for some $f, g \in \alpha - pr \mathcal{N}(e)$.

Hence $(u \wedge v) \in \mathcal{U}_\alpha^l$ for all $\alpha \in L_0$. Thus \mathcal{U}_α^l is a prefilter on $G \times G$ for all $\alpha \in L_0$.

Now, let $0 < \beta \le \alpha$ and $u \in \mathcal{U}_\alpha^l$. Then from (e1) for the family $(\alpha - \text{pr}\mathcal{N}(e))_{\alpha \in L_0}$, we get that $u(x, y) = (g \wedge g^{-1})(x^{-1}y)$ for some $g \in \beta - \text{pr}\mathcal{N}(e)$ for all $x, y \in G$, and then $u \in \mathcal{U}_{\beta}^l$. Hence, the condition (u1) of Proposition 4.2 holds. From (u1) of Proposition 4.2 and from (e2) for $(\alpha - pr \mathcal{N}(e))_{\alpha \in L_0}$. We get that (u2) of Proposition 4.2 is fulfilled. From (e3(and (e4) for $(\alpha - pr \mathcal{N}(e))_{\alpha \in L_0}$, we have for all $\alpha \in L_0$ and all $u \in \mathcal{U}_{\alpha}^l$ that

44 Fatma Bayoumi and Ismail Ibedou

$$
u(x,x) = (f \wedge f^{-1})(x^{-1}x) = (f \wedge f^{-1})(e) \ge \alpha
$$

for some $f \in \alpha - \text{prN}(e)$. Hence, (u3) of Proposition 4.2 holds.

For all $\alpha \in L_0$ and all $u \in \mathcal{U}_\alpha^l$, we have for all $x, y \in G$ that

$$
u^{-1}(x,y) = u(y,x) = (f \wedge f^{-1})(y^{-1}x)
$$

for some $f \in \alpha - pr \mathcal{N}(e)$. Since (3.4) implies, for all $x, y \in G$, that

$$
(f \wedge f^{-1})(x^{-1}y) = f(x^{-1}y) \wedge f^{-1}(x^{-1}y) = f^{-1}(y^{-1}x) \wedge f(y^{-1}x) = (f \wedge f^{-1})(y^{-1}x)
$$

that is, $u(x,y) = u(y,x)$ for all $x, y \in G$, then $u \in \mathcal{U}_\alpha^l$ if and only if $u^{-1} \in \mathcal{U}_\alpha^l$ and thus (u4) of Proposition 4.2 holds.

From (e5) for $(\alpha - \text{prN}(e))_{\alpha \in L_0}$, we have for all $\alpha \in L_0$ and all $f \in \alpha - \text{prN}(e)$ that there exists $g \in \beta - \text{pr}\mathcal{N}(e)$, $\beta \in L_0$, such that $gg \leq f$. For any $u \in \mathcal{U}_\alpha^l$ and all $x, y \in G$, we have $u(x, y) = (f \wedge f^{-1})(x^{-1}y)$ for some $f \in \alpha - \text{pr}\mathcal{N}(e)$, which means that there exists $v \in \mathcal{U}_{\beta}^l$, $\beta \in L_0$, such that (4.2) implies for all $x, y \in G$ that:

$$
(v \circ v)(x, y) = \bigvee_{z \in G} \left(v(x, z) \wedge v(z, y) \right) = \bigvee_{z \in G} \left(\left(g \wedge g^{-1} \right) \left(x^{-1} z \right) \wedge \left(g \wedge g^{-1} \right) \left(z^{-1} y \right) \right)
$$

$$
\leq \left(f \wedge f^{-1} \right) \left(x^{-1} y \right) = u(x, y).
$$

Hence, by means of (e5) for $(\alpha - \text{prN}(e))_{\alpha \in I_0}$, we get

$$
\alpha\leq \bigvee_{v\in \mathcal{U}_\beta^l, (v\circ v)\leq u} \beta= \bigvee_{g\in \beta-\text{pr} \mathcal{N}(e), gg\leq f} \beta
$$

and then (u5) of Proposition 4.2 holds.

Now, we have the family $\left(U^l_{\alpha}\right)_{\alpha \in I_0}$ is a family of prefilters on $G \times G$ and fulfills the conditions (u1) – (u5). Form Proposition 4.2, we get that $(\mathcal{U}_{\alpha}^{l})_{\alpha \in L_0}$ corresponds a fuzzy uniform structure \mathcal{U}^l on G. This correspondence is given by

$$
\mathcal{U}^l(u) = \bigvee_{v \in \mathcal{U}^l_{\alpha}, v \leq u} \alpha \text{ and } \mathcal{U}^l_{\alpha} = \alpha - \text{pr}\mathcal{U}^l.
$$

The same proof can be done with the family $(U_{\alpha})_{\alpha \in I_0}$.

Definition 4.1. \mathcal{U}^{\dagger} and \mathcal{U}^{\dagger} defined by (4.5) and (4.6) are called *left* fuzzy uniform structure and *right* fuzzy uniform structure on G , respectively.

An L -topological group (G, τ) is called *abelian* if the group G is abelian.

Proposition 4.4. *For abelian* L *-topological groups, the left and the right fuzzy uniform structures coincide.*

Proof. Since

$$
(f \wedge f^{-1})(x^{-1}y) = (f \wedge f^{-1})(y^{-1}x) = (f \wedge f^{-1})(xy^{-1})
$$

for all $x, y \in G$ and for some $f \in \alpha - \text{prN}(e)$, then $\mathcal{U}_\alpha^l = \mathcal{U}_\alpha^r$ for all $\alpha \in L_0$. Therefore, $\mathcal{U}^l = \mathcal{U}^r$.

Let U be a fuzzy filter on $X \times X$ such that (x, x) ^{$\leq U$} holds for all $x \in X$, and let M be a fuzzy filter on X. Then the mapping $\mathcal{U}[\mathcal{M}] : L^X \to L$, defined by

$$
\mathcal{U}[\mathcal{M}](f) = \bigvee_{u[g]\leq f} \left(\mathcal{U}(u) \wedge \mathcal{M}(g) \right) \tag{4.7}
$$

for all $f \in L^X$, is a fuzzy filter on X, called the image of M with respect to U [12], where $u \in L^{X \times X}$ and $g, u[g] \in L^{X}$ such that:

$$
u[g](x) = \bigvee_{y \in X} (g(y) \wedge u(y, x)). \tag{4.8}
$$

Proposition 4.5 [12]. Let U be a fuzzy filter on $X \times X$ such that (x, x) $\leq U$ holds *for all* $x \in X$ *, and let* M *be a fuzzy filter on* X *. Then the family* $(L_{\alpha})_{\alpha \in L_{\alpha}}$ with

$$
\mathcal{L}_{\alpha} = \left\{ f \in L^X \, \middle| \, u \big[g \big] \le f \, \text{ for some } u \in \alpha - \text{pr}\mathcal{U} \text{ and } g \in \alpha - \text{pr}\mathcal{M} \right\}
$$

is a valued fuzzy filter base of $\mathcal{U}[\mathcal{M}]$, which consists of prefilters on X such that $\alpha \leq \beta$ implies $\mathcal{L}_{\alpha} \supseteq \mathcal{L}_{\beta}$ for all $\alpha, \beta \in L_0$.

Remark 4.1. From Proposition 4.5, we get for a fuzzy uniform structure U on X and a homogeneous fuzzy filter \dot{x} at $x \in X$, that the family $(L_{\alpha})_{\alpha \in L_{\alpha}}$ with

$$
\mathcal{L}_{\alpha} = \left\{ f \in L^X \left| u \left[g \right] \le f \text{ for some } u \in \alpha - \text{prl} \land \text{ and } \alpha \le g(x) \right\} \tag{4.9}
$$

is a valued fuzzy filter base of $\mathcal{U}[\dot{x}]$, and moreover $\mathcal{L}_{\alpha} = \alpha - \text{prl}(\dot{x})$ for all $\alpha \in L_0$.

To each fuzzy uniform structure U on X is associated a stratified fuzzy topology τ_U . The related interior operator int \mathfrak{u}_u is given by [12].

46 Fatma Bayoumi and Ismail Ibedou

$$
(\text{int}_{\mathcal{U}} f)(x) = \mathcal{U}[x](f) \tag{4.10}
$$

for all $x \in X$, $f \in L^X$. A fuzzy set $f \in L^X$ is called a τ_u -neighborhood of $x \in X$ provided $\alpha \leq \text{int}_{\mathcal{U}} f(x)$ for some $\alpha \in L_0$.

In the following proposition, we show that every stratified L -topological group is uniformizable.

Proposition 4.6. Any stratified L *-topological group* (G, τ) is uniformizable. That is, $\tau_{u'} = \tau_{u'} = \tau_{(u' \vee u^r)} = \tau$.

Proof. From Lemma 4.1 and Proposition 4.3, we get that both of U^l , U^r and $\mathcal{U}^l \vee \mathcal{U}^r$ are fuzzy uniform structures on G.

Since for all $x \in G$ and all $f \in L^G$ we have, from (4.7), (4.10) and Remark 4.1, that:

$$
\operatorname{int}_{\mathcal{U}'} f(x) = \mathcal{U}^{\perp}[\dot{x}](f) = \bigvee_{u[g] \leq f} (\mathcal{U}^{\perp}(u) \wedge g(x)) = 1
$$

is equivalent to

$$
\mathrm{int}_{\mathcal{U}^r} f(x) = \mathcal{U}^r \left[\dot{x} \right] (f) = \bigvee_{u \{g \} \leq f} \left(\mathcal{U}^r \left(u \right) \wedge g \left(x \right) \right) = 1
$$

equivalent to

$$
\mathrm{int}_{\left(\mathcal{U}^{\perp}\vee\mathcal{U}^{\Gamma}\right)}f\left(x\right)=\left(\mathcal{U}^{\perp}\vee\mathcal{U}^{\Gamma}\right)\left[\dot{x}\right]\left(f\right)=\bigvee_{u\left[g\right]\leq f}\left(\left(\mathcal{U}^{\perp}\vee\mathcal{U}^{\Gamma}\right)\left(u\right)\wedge g\left(x\right)\right)=1\,,
$$

which means that f is a τ_{μ} -neighborhood of an element x if and only if it is a τ_{μ} . neighborhood of x if and only if it is a $\tau_{(u' \vee u'')}$ -neighborhood of x. Hence

$$
\tau_{\mathcal{U}^{\scriptscriptstyle\prime}}=\tau_{\mathcal{U}^{\scriptscriptstyle\prime}}=\tau_{\left(\mathcal{U}^{\scriptscriptstyle\prime}\vee\mathcal{U}^{\scriptscriptstyle\prime}\right)}\,.
$$

From (4.7) and (4.8), and also from Remark 4.1, we have

$$
\mathcal{U}^l[\dot{x}](f) = \bigvee_{g \in \alpha - \text{prl}^l[\dot{x}], g \leq f} \alpha = \bigvee_{u[g] \leq f} \left(\mathcal{U}^l(u) \wedge g(x) \right) = \bigvee_{h \in \alpha - \text{prN}(x), h \leq f} \alpha = \mathcal{N}(x)(f)
$$

for all $x \in G$ and all $f \in L^G$. Hence, the fuzzy neighborhood filter $\mathcal{U}^l [\dot{x}]$ of $(G, \tau_{\mathcal{U}})$ at every $x \in G$ is identical with the fuzzy neighborhood filter $\mathcal{N}(x)$ at every x in the L -topological group (G,τ) . Thus, $\tau_{\mu} = \tau$, and therefore (G,τ) is uniformizable.

In the following we show that these conditions (e1) – (e5) for a family of prefilters on G are also sufficient to construct form the group G a stratified L -topological group.

Proposition 4.7. *Let* G *be a group and* e *the identity element of* G *, and let* $({\cal V}_{\alpha}^{e})_{\alpha\in L_{0}}$ be a family of prefilters on G fulfilling conditions (e1) – (e5). Defining, for *each* $\alpha \in L_0$ *, the subsets*

$$
\mathcal{U}_{\alpha}^{l} = \left\{ u \in L^{G \times G} \left| u(x, y) = \left(f \wedge f^{-1} \right) \left(x^{-1} y \right) \text{ for some } f \in \mathcal{V}_{\alpha}^{e} \right\} \right\}
$$

and

$$
\mathcal{U}_{\alpha}^{r} = \left\{ u \in L^{G \times G} \left| u(x, y) = \left(f \wedge f^{-1} \right) \left(xy^{-1} \right) \text{ for some } f \in \mathcal{V}_{\alpha}^{e} \right\}
$$

of $L^{G\times G}$. Hence, we have the left and the right fuzzy uniform structures U^l and U^r on *G* defined by (4.5) and (4.6), respectively. Moreover, $\tau_{u'} = \tau_{u'} = \tau_{(u' \vee u'')}$ is a stratified *fuzzy topology* τ *on* G *for which the pair* (G, τ) *is a stratified* L *-topological group. Finally, for each* $\alpha \in L_0$ *, we have* $\mathcal{V}_\alpha^e = \alpha - \text{pr}(\alpha)$ *, where* $\mathcal{N}(e)$ *is the fuzzy neigh-*

borhood filter at e with respect to the fuzzy topology τ on G .

Proof. As in Proposition 4.3 and 4.6, we get that \mathcal{U}^l and \mathcal{U}^r are the left and the right fuzzy uniform structures on G for which $\tau_{u'} = \tau_{u''} = \tau_{u' \vee u''}$ is a fuzzy topology on the group G. Denote $\tau_{u'} = \tau_{u'} = \tau_{(u' \vee u'')}$ by τ . It remains to prove that (G, τ) is an L topological group and that $\mathcal{V}_{\alpha}^e = \alpha - \text{pr}\mathcal{N}(e)$ for all $\alpha \in L_0$.

Now, from that the conditions of proposition 2.1 are equivalent to the conditions (e1) $-$ (e2), we get that

$$
\mathcal{V}_{\alpha}^{e} = \alpha - \text{pr}\mathcal{U}^{i} \left[\dot{e} \right] = \alpha - \text{pr}\mathcal{U}^{r} \left[\dot{e} \right] = \alpha - \text{pr}\left(\mathcal{U}^{i} \vee \mathcal{U}^{r} \right) \left[\dot{e} \right]
$$

for all $\alpha \in L_0$. That is, $\mathcal{V}_\alpha^e = \alpha - \text{pr}\mathcal{N}(e)$ for all $\alpha \in L_0$, where $\mathcal{N}(e)$ is the fuzzy neighborhood filter of (G, τ) at e.

From conditions (e4) and (e5) of the prefilters α – pr $\mathcal{N}(e)$ for all $\alpha \in L_0$, we get that for all $f \in \alpha - \text{prN}(e)$, there exist $g, h \in \alpha - \text{prN}(e)$ for some $\alpha \in L_0$ such that $g^{-1}h \leq f$, which means that

$$
(ga)^{-1}(hb) = a^{-1}(g^{-1}h)b \le a^{-1}fb
$$
.

That is, from Lemma 3.2, we get that for all $\lambda = a^{-1} f b \in \alpha - \text{pr} \mathcal{N}(a^{-1}b)$, there exist $\mu = ga \in \alpha - \text{pr}\mathcal{N}(a)$ and $\nu = hb \in \alpha - \text{pr}\mathcal{N}(b)$ such that $\mu^{-1}\nu \leq \lambda$. Hence, (G, τ) is an L -topological group. Let us define the following.

Definition 4.2. Let \mathcal{U} be a fuzzy uniform structure on a set X . Then

(1) $u \in L^{X \times X}$ is called a *surrounding* provided $\mathcal{U}(u) \ge \alpha$ for some $\alpha \in L_0$ and $u = u^{-1}$.

(2) A surrounding $u \in L^{X \times X}$ is called *left (right) invariant* provided $u(ax, ay) =$ $u(x,y)$ $(u(xa,ya) = u(x,y))$ for all $a,x,y \in X$,

(3) U is called a *left (right) invariant* fuzzy uniform structure if U has a valued fuzzy filter base consists of left (right) invariant surroundings.

Now, from Proposition 4.3, we have this remark.

Remark 4.2. In the L-topological group (G, τ) , for each element u in \mathcal{U}_α^l , defined by (4.3), we have $\mathcal{U}^l_\alpha(u) \ge \alpha$ for some $\alpha \in L_0$ and also, for all $x, y \in G$ and each $u \in \mathcal{U}_{\alpha}^l$, we have

$$
u(x,y) = (f \wedge f^{-1})(x^{-1}y) \text{ for some } f \in \alpha - \text{prN}(e)
$$

$$
= (f \wedge f^{-1})(y^{-1}x) \text{ for some } f \in \alpha - \text{prN}(e)
$$

$$
= u(y,x) = u^{-1}(x,y).
$$

That is, \mathcal{U}_{α}^{l} is a prefilter of surroundings. Also, for all $a, x, y \in G$, we have

$$
u(ax, ay) = (f \wedge f^{-1})((ax)^{-1}(ay)) \text{ for some } f \in \alpha - \text{prN}(e)
$$

$$
= (f \wedge f^{-1})(x^{-1}y) \text{ for some } f \in \alpha - \text{prN}(e)
$$

$$
= u(x, y) \text{ for all } u \in \mathcal{U}_\alpha^l \text{ and for all } x, y \in G.
$$

Thus, the elements of \mathcal{U}^l_α are left invariant surroundings. Moreover, $(U^l_\alpha)_{\alpha \in I_0}$ is a valued fuzzy filter base for the left fuzzy uniform structure \mathcal{U}^{ℓ} defined by (4.5), and hence \mathcal{U}^{\prime} is a left invariant fuzzy uniform structure on G. By the same way, \mathcal{U}^{\prime} , defined by (4.6) , is a right invariant fuzzy uniform structure on G .

Notice that: Between any two systems of sets A and B , we recall that A is called *coarser than* B if for any $A \in \mathcal{A}$, there is $B \in \mathcal{B}$ such that $B \subseteq A$.

The following important proposition is now obtained from our last results.

Proposition 4.8. Let (G,τ) be a stratified L-topological group. Then there exist on G a unique left invariant fuzzy uniform structure \mathcal{U}^{\perp} and a unique right invariant fuzzy *uniform structure* U^r *compatible with* τ , *constructed in Proposition 4.3 using the family* $(\alpha - \text{pr}\mathcal{N}(e))_{\alpha \in L_0}$ *of all prefilters* $\alpha - \text{pr}\mathcal{N}(e)$ *, where* $\mathcal{N}(e)$ *is the fuzzy neighborhood filter at the identity element* ϵ *of the L -topological group* (G, τ) *.*

Proof. From Propositions 4.3 and 4.6, and Remark 4.2, we have \mathcal{U}^l and \mathcal{U}^r are the left and the right invariant fuzzy uniform structures on G , respectively for which $\tau_{\mathcal{U}'} = \tau_{\mathcal{U}'} = \tau$. Suppose that $(\mathcal{V}_{\alpha}^{l})_{\alpha \in L_{0}}$ is a valued fuzzy filter base for a left invariant fuzzy uniform structure V^l on G such that $\tau_{V^l} = \tau_{U^l} = \tau$.

Since for any $v_1 \in V_\alpha^l$, there exists $v_2 \in V_\alpha^l$ with $v_2 \le v_1$ and $v_2(u, ay) = v_2(x, y)$ for all $a, x, y \in G$. From (4.8), we get that $v_2[e_1](x) = v_2(e, x)$ for all $x \in G$, that is, $v_2[e_1](e) = v_2(e,e) \ge \alpha$ and there exists a left invariant surrounding $u \in \mathcal{U}^l_\alpha$ such that $u[e_1] \le v_2[e_1]$. Now, $u(x,y) = u(xx^{-1},x^{-1}y) = u(e,x^{-1}y) = u[e_1](x^{-1}y) \le v_2[e_1](x^{-1}y)$ for all $x, y \in G$, which means that $u(x,y) = v_2(e, x^{-1}y) = v_2(x,y)$ and also we have $v_2 \le v_1$, so $u \le v_1$. That is, for all $\alpha \in L_0$ and for any $v_1 \in V_\alpha^l$, there exists $u \in \mathcal{U}_\alpha^l$ such that $u \le v_1$, and this means that \mathcal{V}_α^l is coarser than \mathcal{U}_α^l for all $\alpha \in L_0$. By the same way, we can show that \mathcal{U}_{α}^{l} is coarser than \mathcal{V}_{α}^{l} for all $\alpha \in L_0$, and thus $\mathcal{V}_{\alpha}^{l} = \mathcal{U}_{\alpha}^{l}$ for all $\alpha \in L_0$. Hence, $V^l = U^l$.

Similarly, one can prove that the right invariant fuzzy uniform structure U^r is unique.

5. The relation between the L -topological groups and the $GT_{3\frac{1}{2}}$ -spaces

In this section we shall show and prove the relation between our notion of GT_{3} . spaces and the notion of L-topological groups defined in [1]. In [2,3,5] we had defined the fuzzy separation axioms GT_i , $i = 0, 1, 2, 3, 3, 4$. Here, we recall some of these axioms which we need in the following.

A fuzzy topological space (X, τ) is called [2,3,5]:

(1) GT_0 if for all $x, y \in X$ with $x \neq y$ we have $\dot{x} \leq \mathcal{N}(y)$ or $\dot{y} \leq \mathcal{N}(x)$.

(2) GT_1 if for all $x, y \in X$ with $x \neq y$ we have $\dot{x} \not\leq \mathcal{N}(y)$ and $\dot{y} \not\leq \mathcal{N}(x)$.

(3) GT₂ if for all $x, y \in X$ with $x \neq y$ we have $\mathcal{N}(x) \wedge \mathcal{N}(y)$ does not exist.

(4) GT_3 if it is GT_1 and if for all $x \in X$ and all $F \in \tau'$ with $x \notin F$, we have $\mathcal{N}(x) \wedge \mathcal{N}(F)$ does not exist.

(5) *completely regular* if for all $x \notin F \in \tau'$, there exists a fuzzy continuous mapping $f:(X,\tau) \to (I_L,\mathfrak{S})$ such that $f(x)=1$ and $f(y)=0$ for all $y \in F$.

(6) $GT_{3\frac{1}{2}}$ (or L -Tychonoff) if it is GT_1 and completely regular.

(7) GT_4 if it is GT_1 and if for all $F, G \in \tau'$ with $F \cap G = \emptyset$, we have $\mathcal{N}(F) \wedge \mathcal{N}(G)$ does not exist.

Denote by GT_i -*space* the fuzzy topological space which is GT_i , $i = 0, 1, 2, 3, 3, 4$.

Proposition 5.1 [2,3,5]. *Every GT_i*-space is GT_{i-1} -space for each $i = 1, 2, 3, 4$, and $GT_{3\frac{1}{2}}$ -spaces fulfill the following: every GT_4 -space is a $GT_{3\frac{1}{2}}$ -space and every $GT_{3\frac{1}{2}}$ *space is a GT*₃ - *space*.

Proposition 5.2 [6]. *If U is a fuzzy uniform structure on a set X and* τ_u the fuzzy *topology associated to U*, then (X, τ_{μ}) *is a completely regular space. The fact that the fuzzy topology of an* L *-topological group can be induced by a left or right invariant fuzzy uniform structure leads us to our fundamental results in this section as follows.*

Proposition 5.3. *The fuzzy topology of an* L *-topological group is completely regular. Proof.* The proof goes directly from Proposition 4.6 and 5.2.

Definition 5.1. An L -topological group (G, τ) is called *separated* if for the identity element e, we have $\bigwedge_{f \in \alpha - \text{pr}(e)} f(e) \ge \alpha$ and $\bigwedge_{f \in \alpha - \text{pr}(e)} f(x) < \alpha$ for all $x \in G$ with $x \neq e$ and for all $\alpha \in L_0$. A fuzzy uniform structure U on a set X is called *separated* [4] if for all $x, y \in X$ with $x \neq y$ there is $u \in L^{X \times X}$ such that $\mathcal{U}(u) = 1$ and $u(x, y) = 0$. The space (X, \mathcal{U}) is called *separated fuzzy uniform space*.

Proposition 5.4 [4]. *Let X be a set, U a fuzzy uniform structure on X and* τ_u *the fuzzy topology associated with* U *. Then* (X, U) *is separated if and only if* (X, τ_{U}) *is* GT_0 -space. In the following result we have shown the expected relation between our notion of $GT_{3\frac{1}{2}}$ *-spaces and the notion of L -topological groups.*

Proposition 5.5. Let (G, τ) be an L *-topological group.* Then the following *statements are equivalent.*

- (1) The fuzzy topology τ is GT_0 .
- (2) The fuzzy topology τ is GT_1 .
- (3) The fuzzy topology τ is GT_2 .
- (4) The fuzzy topology τ is $GT_{3\frac{1}{2}}$.
- (5) \mathcal{U}^l is separated.
- (6) U^r is separated.
- (7) The L -topological group (G, τ) is separated.

2

Proof. (1) \Rightarrow (2) Let $x \neq y$ in G, then for one point (say x) there exists a τ -neighborhood f such that $\text{int}_{\tau} f(x) \ge \alpha > f(y)$, which means that there is $h \in \alpha - \text{prN}(e)$ such that $h = x^{-1}f$ and then $k = h \wedge h^{-1}$ is a symmetric τ -neighborhood of e, and this means that the fuzzy set $g = yk$ is a τ -neighborhood of y for which int, $g(y) \ge \alpha$ $g(x)$ because if otherwise $g(x) = yk(x) \ge \alpha$, then

$$
\alpha \le g^{-1}\left(x^{-1}\right) = \left(h \wedge h^{-1}\right)y^{-1}\left(x^{-1}\right) = \left(x^{-1}f \wedge f^{-1}x\right)y^{-1}\left(x^{-1}\right) \le x^{-1}fy^{-1}\left(x^{-1}\right),
$$

that is, $fy^{-1}(e) \ge \alpha$, and then $f(y) \ge \alpha$ which is a contradiction. Hence there exists a τ -neighborhood g of y such that $\text{int}_{\tau} g(y) \ge \alpha > g(x)$, and thus (G,τ) is a GT_1 space.

 $(2) \Rightarrow (3)$ It is clear from Proposition 5.1 and 5.3.

 $(3) \Rightarrow (4)$ Obvious.

 $(4) \Rightarrow (5)$ and $(4) \Rightarrow (6)$ The proof comes from Proposition 4.6, and from Proposition 5.1 and 5.4.

(5) \Rightarrow (7) Since U' is separated then, by means of Proposition 4.6 and 5.4, $\tau = \tau_{\mu}$ is GT_0 . Thus for any $x \neq e$ in G, there exists $f \in \alpha - \text{prN}(e)$ such that $f(x) < \alpha \leq$ $\int \int_{f \in \alpha} f(e) \le f(e)$. Hence, $\bigwedge_{f \in \alpha - \text{pr}(e)} f(x) \ge \alpha$ whenever $x = e$ and $\bigwedge_{f \in \alpha - \text{pr}(e)} f(x)$ α otherwise. That is, (G, τ) is a separated L-topological group.

(6) \Rightarrow (7) The proof goes similar to the case (5) \Rightarrow (7).

(7) \Rightarrow (1) If $x, y \in G$ with $x \neq y$, then $x^{-1}y \neq e$ and then $\bigwedge_{f \in \alpha - \text{pr}(x)} f(x^{-1}y) < \alpha$, which means that there exists $f \in \alpha - pr \mathcal{N}(e)$ such that $f(x^{-1}y) < \alpha$, that is, $xf(y) =$ $\bigwedge_{f(z) > 0} (xz)_1(y) < \alpha$, where $z = x^{-1}y$ is not allowed. Since $\{xf \mid f \in \alpha - \text{prN}(e)\}$ is itself α - pr $\mathcal{N}(x)$, that is, the set of all α -fuzzy neighborhoods of x and $xf(y) < \alpha$. Hence, $xf(y) < \alpha \leq int_{\tau} (xf)(x)$. Thus, (G, τ) is GT_0 .

References

- [1] T. M. G. Ahsanullah, On fuzzy topological groups and semigroups, Ph. D Thesis, Faculty of science, Free university of Brussels, (1984).
- [2] F. Bayoumi and I. Ibedou, T_. -spaces, I, *The Journal of The Egyptian Mathematical Society*, Vol. 10 (2) (2002), 179-199.
- [3] F. Bayoumi and I. Ibedou, T_i -spaces, II, *The Journal of The Egyptian Mathematical Society*, Vol. 10 (2) (2002), 201-215.
- [4] F. Bayoumi and I. Ibedou, The relation between the GT -spaces and fuzzy proximity spaces, G compactspaces, fuzzy uniform spaces, *The Journal of Chaos*, *Solitons and Fractals,* 20 (2004), 955- 966.
- [5] F. Bayoumi and I. Ibedou, $GT_{3\frac{1}{2}}$ -spaces, I, *The journal of the Egyptian mathematical society*, Vol.14(2) (2006), 243-264.
- [6] F. Bayoumi and I. Ibedou, $GT_{3\frac{1}{2}}$ -spaces, II, *The journal of the Egyptian mathematical society*, Vol.14(2)(2006), 265-282.
- [7] F. Bayoumi, On initial and final L -topological groups, *Fuzzy Sets and Systems,* 156 (2005), 43-54.
- [8] C. L. Chang, Fuzzy topological spaces, *J. Math. Anal. Appl.,* 24 (1968), 182-190.
- [9] P. Eklundand W. Gahler, Fuzzy filter functors and convergence, in Applications of category theory to fuzzy subsets, *Kluwer Academi Publishers, Dorderecht et al.,* (1992), 109-136.
- [10] W. Gahler, The general fuzzy filter approach to fuzzy topology, I, *Fuzzy Sets and Systems,* 76 (1995), 205-224.

52 Fatma Bayoumi and Ismail Ibedou

- [11] W. Gahler, The general fuzzy filter approach to fuzzy topology, II, *Fuzzy Sets and Systems,* 76 (1995), 225-246.
- [12] W. Gahler, F. Bayoumi, A. Kandil and A. Nouh, The theory of global fuzzy neighborhood structures, (III), Fuzzy uniform structures, *Fuzzy Sets and Systems,* 98 (1998), 175-199.
- [13] J. A. Goguen, L -fuzzy sets, *J. Math. Anal. Appl.,* 18 (1967), 145-174.
- [14] T. Husain, Introduction to topological groups, Huntington, New York, (1981).
- [15] R. Lowen, Convergence inf uzzy topological spaces, *General Topology and Appl.,* k10 (1979), 147- 160.